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For the systematic development of new TEM-microwave components the
accurate calculation of the TEM-wave characteristic impedance is necessary.
Besides the characteristic impedance the properties of TE- and TM-modes

in new configurations are important. By TE- or TM-modes in a device designed
for TEM-waves the function of this device is gravely disturbed. As the
probabitity of TE- or TM-modes growths with frequency increasing this
question is important especially at microwave frequencies.

Many of the modern transmission line structures are accessible only to
numerical calculation methods. Therefore I generated computer programs for
the calculation of TEM-, TE- and TM-waves in transmission iines with
general cross sections. In thé foilowing, after a short description of the
numerical methods, results for the special case of shielded strip transmission
lines with rectangular inner conductor and rectangular outer conductor wilt
be presented. The TEM-wave characteristic impedance can be calculated if
the L.aplace equation has been solved for the proper boundary conditions. For
the solution I used a finite difference method. The appiication of this method
was demonstrated in /1, 2, 3/. However, some accuracy problems remained
unsolved. Therefore I made some investigations concerning the accuracy of
the method. For the calculation of TE- and TM-modes an advanced version of
a method described in /4/ was employed. This method applies the static field
lines and the static equipotential lines as a curvilinear coordinate system.
These lines can be easily obtained together with the TEM-wave characteristic
impedance. All numerical calculations were performed at the TR4-computer of
the Bavarian Academy of Sciences, Munich.

The Finite Difference Method for the Solution of the Laplace Equation and the
Error of Discretization. The cross section of the transmission line is
superposed by a square mesh., The finite difference method is based upon the
assumption that the potential in every mesh point is approximately the
arithmetic mean of the potentials in the four neighbouring mesh points. This
assumption is appropriate whenever the derivatives of the potential function
with orders higher than two are negligibly smail. The unknown static potentials
in the Inner mesh points can be calculated from an inhomogeneous linhear
equation system by an iteration process called relaxation /1, 2, 3/. The
method involves an error of discretization and a residual error of relaxation.
The latter is a consequence of the iteration process and has inferior importance
as it can be made sufficiently small by a reasonable number of iteration runs.
The error of discretization decreases with the mesh number N increasing.

For N there are set limits by the avalilable computer storage. Therefore it is
important to know the dependence of this error upon N to sele=t the appropriate
N for a given problem and to gain higher accuracy by extrapolation to N
infinite.

For shielded strip transmission lines I studied the error of discretization by
help of numerical investigations. In these transmission lines at the 90°-edges
of the inner conductor all derivatives of the potential function are infinite.
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Therefore these edges are the main sources of the discretization error. Up
to a constant factor the dependence of the discretization error on N is about
the same for all shielded strip transmission lines due to these edges. For
my investigations I chose examples with retatively large inner conductors for
which I could calculate the characteristic impedance by conformal trans-
formation /3/ with an accuracy far exceeding the accuracy obtainable by the
finite difference method. After the quasi-exact calculation by conformal
transformation I treated the same examples by the finite difference method
with various mesh numbers N. The comparison of the results of both methods
immediately gave the error of discretization, depending on N.

The finite difference method primarily yields the static potentiais in the mesh
points., From these the characteristic impedance can be calculated via the
dielectric displacement on the inner conductor (case 1), /1, 2/, or on the
outer conductor (case II), /1, 2/, or via the totai electrical field energy
(case 1I1I), /3/. In fig. 1 for a representative example the relative error of
the characteristic impedance (cases I, II, III) is drawn depending on N. It can
be seen that the energy method (case 1II) is the most accurate. A more
detailed study of fig. 1 allows the generally valid conclusion that with 90°-
edges at the inner conductor the error of discretization is approximately a
linear function of N=N with n= 1.5. In the literature sometimes the too
optimistic value n = 2 is suggested. In /3/ it is shown that Lagrange extra-
polation to infinite N with n = 1.25 effects an improvement of the accuracy by
about one order.

In fig. 2 the characteristic impedance of shielded strip transmission lines is
drawn depending on the width r of the inner conductor.

The Calculation of TE~ and TM-Modes. For the cross section a curvilinear
coordinate system is established, see fig. 3. This results from the solution
of the Laplace equation which is hecessary for the calculation of the TEM~
wave characteristic impedance. The coordinate system gives the conformat
transformation of the original cross section upon the cross section of a
parallel plate line with equal characteristic impedance.In the curvilinear
coordinate system the metallic boundaries of the cross section coincide with
lines of constant coordinate values {outer conductor y = 0, inner conductor

y = b). This is convenient for the formuiation of the boundary conditions. In
the curvilinear coordinate system the field intensitiesof the TE~ and TM-
modes are performed by trigonometric series expansions with coefficients to
be calculated. If the series expansions are inserted into Maxwell's equations
there result linear equations for the coefficients. These equations represent
a matrix eigenvalue problem. By means of the equations the critical wave-~
lengths and the unknown coefficients can be calculated. From these all wanted
informations about the waveguide modes can be obtained by simple numerical
procedures., Themethod is applicable to any transmission line for the cross
section of which the static field an equipotential lines are known. A more de-
tailed explanation of the theory is to be found in /3/. It will be published
in the near future.

In the following I will present some exampies of my calculations , More
examples are collected in /3/. Fig. 4 shows the transverse electric resp.
maghnetic field patterns for various TE- resp, TM-modes. In this case the
dimensions of the transmission tine are p/q=1.5; s/q =0.2; r/p = 0.5,

The names of the modes indicate to which modes in the rectangular wave-

guide without inner conductor they are related. In figs. 5a,b the critical wave~
lengths for the most important modes are drawn depending on the width r of
the inner conductor.

In order to test the accuracy of the calcuiations some critical wavelengths
were controlled by resonator measurements. The resonators had the cross
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sectional dimensions

1) p/a=1.5; r/p =0.75; s/q = 0.25

2) p/d=1.5; r/p =0.50; s/q=0.25.
The mechanical tolerances of the resonators were better than 0.1%.1In the
following table we see the good coincidence of the measurements and of the
calculations.

Mode normalized critical wavelength )\C/p

Resonator 1 Resonator 2

meagsured calculated measured calculated
TE’IO 2,165 2.1654 2.244 2,2425
TE3O 0,729 0.7339 0,680 0.6819
TEO’I 2,791 2.7961 2.015 2.0170
TE'H 1.382 1.3744 1.188 1.1785
TM1 1 0.485 0.4852 0,535 0.5342
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relative error of characteristic impedance
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Fig. 1: The error of discretization as a function of the
total mesh number
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Fig. 2 The characteristic impedance of shielded strip transmission lines
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Fig. 3: The curvilinear coordinate system
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Fig. 4: Transverse electric resp. magnetic field patterns
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Fig. 52 The critical wavelengths of the most important TE-modes
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Fig. 5b: The critical wavelengths of the most important TM-modes
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